Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Microb Drug Resist ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593463

RESUMO

This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying blaTEM and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The blaTEM-1 and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, blaTEM-1 and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain blaTEM and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate blaTEM and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38536071

RESUMO

Five bacterial isolates were isolated from Fragaria × ananassa in 1976 in Rydalmere, Australia, during routine biosecurity surveillance. Initially, the results of biochemical characterisation indicated that these isolates represented members of the genus Xanthomonas. To determine their species, further analysis was conducted using both phenotypic and genotypic approaches. Phenotypic analysis involved using MALDI-TOF MS and BIOLOG GEN III microplates, which confirmed that the isolates represented members of the genus Xanthomonas but did not allow them to be classified with respect to species. Genome relatedness indices and the results of extensive phylogenetic analysis confirmed that the isolates were members of the genus Xanthomonas and represented a novel species. On the basis the minimal presence of virulence-associated factors typically found in genomes of members of the genus Xanthomonas, we suggest that these isolates are non-pathogenic. This conclusion was supported by the results of a pathogenicity assay. On the basis of these findings, we propose the name Xanthomonas rydalmerensis, with DAR 34855T = ICMP 24941 as the type strain.


Assuntos
Fragaria , Xanthomonas , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química
3.
Sci Total Environ ; 919: 170815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336047

RESUMO

Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.


Assuntos
Charadriiformes , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Microbiota , Animais , Humanos , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Austrália , Antibacterianos , Fatores de Virulência/genética , Animais Selvagens
4.
J Antimicrob Chemother ; 79(4): 851-858, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380682

RESUMO

BACKGROUND: The emergence of macrolide and tetracycline resistance within Pasteurella multocida isolated from feedlot cattle and the dominance of ST394 in Australia was reported recently. OBJECTIVES: To establish the genetic context of the resistance genes in P. multocida 17BRD-035, the ST394 reference genome, and conduct a molecular risk assessment of their ability to disperse laterally. METHODS: A bioinformatic analysis of the P. multocida 17BRD-035 genome was conducted to determine if integrative conjugative elements (ICEs) carrying resistance genes, which hamper antibiotic treatment options locally, are in circulation in Australian feedlots. RESULTS: A novel element, ICE-PmuST394, was characterized in P. multocida 17BRD-035. It was also identified in three other isolates (two ST394s and a ST125) in Australia and is likely present in a genome representing P. multocida ST79 from the USA. ICE-PmuST394 houses a resistance module carrying two variants of the blaROB gene, blaROB-1 and blaROB-13, and the macrolide esterase gene, estT. The resistance gene combination on ICE-PmuST394 confers resistance to ampicillin and tilmicosin, but not to tulathromycin and tildipirosin. Our analysis suggests that ICE-PmuST394 is circulating both by clonal expansion and horizontal transfer but is currently restricted to a single feedlot in Australia. CONCLUSIONS: ICE-PmuST394 carries a limited number of unusual antimicrobial resistance genes but has hotspots that facilitate genomic recombination. The element is therefore amenable to hosting more resistance genes, and therefore its presence (or dispersal) should be regularly monitored. The element has a unique molecular marker, which could be exploited for genomic surveillance purposes locally and globally.


Assuntos
Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/genética , Austrália , Antibacterianos/farmacologia , Macrolídeos/farmacologia
5.
Appl Environ Microbiol ; 90(2): e0165423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38206028

RESUMO

Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Macrolídeos , Plasmídeos/genética , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
6.
Biol Rev Camb Philos Soc ; 99(2): 582-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062990

RESUMO

Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.


Assuntos
Microbioma Gastrointestinal , Animais , Coprofagia , Aves , Dieta/veterinária , Fezes
7.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749210

RESUMO

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Assuntos
Farmacorresistência Bacteriana , Saúde Única , Animais , Humanos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genômica , Animais Selvagens
8.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139033

RESUMO

To date, the scientific literature on health variables for Escherichia coli antimicrobial resistance (AMR) has been investigated throughout several systematic reviews, often with a focus on only one aspect of the One Health variables: human, animal, or environment. The aim of this umbrella review is to conduct a systematic synthesis of existing evidence on Escherichia coli AMR in humans in the community from a One Health perspective. PubMed, EMBASE, and CINAHL were searched on "antibiotic resistance" and "systematic review" from inception until 25 March 2022 (PROSPERO: CRD42022316431). The methodological quality was assessed, and the importance of identified variables was tabulated across all included reviews. Twenty-three reviews were included in this study, covering 860 primary studies. All reviews were of (critically) low quality. Most reviews focused on humans (20), 3 on animals, and 1 on both human and environmental variables. Antibiotic use, urinary tract infections, diabetes, and international travel were identified as the most important human variables. Poultry farms and swimming in freshwater were identified as potential sources for AMR transmission from the animal and environmental perspectives. This umbrella review highlights a gap in high-quality literature investigating the time between variable exposure, AMR testing, and animal and environmental AMR variables.


Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia
9.
mSystems ; 8(5): e0123622, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675998

RESUMO

IMPORTANCE: Extraintestinal pathogenic Escherichia coli (ExPEC) sequence type (ST) 38 is one of the top 10 human pandemic lineages. Although a major cause of urinary tract and blood stream infections, ST38 has been poorly characterized from a global phylogenomic perspective. A comprehensive genome-scale analysis of 925 ST38 isolate genomes identified two broad ancestral clades and linkage of discrete ST38 clusters with specific bla CTX-M variants. In addition, the clades and clusters carry important virulence genes, with diverse but poorly characterized plasmids. Numerous putative interhost and environment transmission events were identified here by the presence of ST38 clones (defined as isolates with ≤35 SNPs) within humans, companion animals, food sources, urban birds, wildlife, and the environment. A small cluster of international ST38 clones from diverse sources, likely representing progenitors of a hospital outbreak that occurred in Brisbane, Australia, in 2017, was also identified. Our study emphasizes the importance of characterizing isolate genomes derived from nonhuman sources and geographical locations, without any selection bias.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Filogenia , Plasmídeos
10.
Microbiome ; 11(1): 158, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491320

RESUMO

BACKGROUND: Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. RESULTS: A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica. CONCLUSION: This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. Video Abstract.


Assuntos
Doenças dos Bovinos , Doenças Respiratórias , Rinite , Vírus , Animais , Bovinos , Austrália , Vírus/genética , Doenças dos Bovinos/microbiologia
11.
J Law Med ; 30(1): 179-190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37271958

RESUMO

Technologically enhanced surveillance systems have been proposed for the task of monitoring and responding to antimicrobial resistance (AMR) in both human, animal and environmental contexts. The use of these systems is in their infancy, although the advent of COVID-19 has progressed similar technologies in response to that pandemic. We conducted qualitative research to identify the Australian public's key concerns about the ethical, legal and social implications of an artificial intelligence (AI) and machine learning-enhanced One Health AMR surveillance system. Our study provides preliminary evidence of public support for AI/machine learning-enhanced One Health monitoring systems for AMR, provided that three main conditions are met: personal health care data must be deidentified; data use and access must be tightly regulated under strong governance; and the system must generate high-quality, reliable analyses to guide trusted health care decision-makers.


Assuntos
Inteligência Artificial , COVID-19 , Animais , Humanos , COVID-19/epidemiologia , Antibacterianos/farmacologia , Austrália , Farmacorresistência Bacteriana
12.
Microorganisms ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375015

RESUMO

Bacterial chondronecrosis with osteomyelitis (BCO) impacts animal welfare and productivity in the poultry industry worldwide, yet it has an understudied pathogenesis. While Avian Pathogenic Escherichia coli (APEC) are known to be one of the main causes, there is a lack of whole genome sequence data, with only a few BCO-associated APEC (APECBCO) genomes available in public databases. In this study, we conducted an analysis of 205 APECBCO genome sequences to generate new baseline phylogenomic knowledge regarding the diversity of E. coli sequence types and the presence of virulence associated genes (VAGs). Our findings revealed the following: (i) APECBCO are phylogenetically and genotypically similar to APEC that cause colibacillosis (APECcolibac), with globally disseminated APEC sequence types ST117, ST57, ST69, and ST95 being predominate; (ii) APECBCO are frequent carriers of ColV-like plasmids that carry a similar set of VAGs as those found in APECcolibac. Additionally, we performed genomic comparisons, including a genome-wide association study, with a complementary collection of geotemporally-matched genomes of APEC from multiple cases of colibacillosis (APECcolibac). Our genome-wide association study found no evidence of novel virulence loci unique to APECBCO. Overall, our data indicate that APECBCO and APECcolibac are not distinct subpopulations of APEC. Our publication of these genomes substantially increases the available collection of APECBCO genomes and provides insights for the management and treatment strategies of lameness in poultry.

13.
Vet Microbiol ; 283: 109773, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37201306

RESUMO

Pasteurella multocida causes a range of diseases in many host species throughout the world, including bovine respiratory disease (BRD) which is predominantly seen in feedlot cattle. This study assessed genetic diversity among 139 P. multocida isolates obtained from post-mortem lung swabs of BRD-affected feedlot cattle in four Australian states: New South Wales, Queensland, South Australia, and Victoria during 2014-2019. Whole-genome sequencing (WGS) was used to determine capsular serogroup, lipopolysaccharide genotypes, multi-locus sequence types and phylogenetic relationships. Two capsular types (A and D), with most isolates (132/139; 95%) belonging to type A; and three lipopolysaccharide (LPS) genotypes were identified (L1 [6/139; 4.3%], L3 [124/139; 89.2%] and L6 [9/139; 6.4%)]). Multi-locus sequence types (STs) ST9, ST13, ST17, ST20, ST36, ST50, ST58, ST79, ST124, ST125, ST132, ST167, ST185, ST327, ST394, and three novel STs [ST396, ST397, and ST398] were identified, with ST394 (59/139; 42.4%) and ST79 (44/139; 32%) the most prevalent in all four states. Isolates displaying phenotypic resistance to single, dual or multiple antibiotics (macrolide, tetracycline and aminopenicillins) were predominantly ST394 (23/139; 17%). Laterally mobile elements identified in the resistant ST394 isolates included small plasmids, encoding macrolide and/or tetracycline resistance, distributed in all states; and chromosomally located integrative conjugative elements (ICEs) (4 ST394 and 1 ST125) from the same Queensland feedlot. This study highlights the genomic diversity, epidemiological relationships and AMR associations in bovine P. multocida isolates from Australia and provides insight into the unique ST prevalence compared to other major beef-producing countries.


Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Doenças Respiratórias , Bovinos , Animais , Pasteurella multocida/genética , Lipopolissacarídeos , Filogenia , Doenças dos Bovinos/epidemiologia , Antibacterianos/farmacologia , Doenças Respiratórias/veterinária , Genômica , Macrolídeos , Vitória , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária
14.
Vet Microbiol ; 283: 109779, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257307

RESUMO

To date, antimicrobial susceptibility has not been reported for Australian Mycoplasma bovis isolates. This study determined minimal inhibitory concentrations (MICs) for 12 different antimicrobials against Australian M. bovis isolates and used whole genome sequencing to screen those showing high macrolide MICs for point mutations in target genes. Most lung tissue/swab samples from bovine respiratory disease cases (61/76, 80.3%) tested positive for M. bovis. A set of 50 representative isolates (50/61, 82.0%) that showed adequate growth, was used for MIC testing. Uniformly, low MIC values were confirmed for enrofloxacin (≤ 4 µg/mL), florfenicol (≤ 8 µg/mL), gamithromycin (≤ 2 µg/mL), spectinomycin (≤ 4 µg/mL), tetracycline (≤ 8 µg/mL), tiamulin (≤ 4 µg/mL), and tulathromycin (≤ 0.5 µg/mL). A small proportion (10%) of isolates exhibited high MICs (≥ 32 µg/mL) for tildipirosin, tilmicosin, tylosin, and lincomycin, which were above the epidemiological cut-off values for each antimicrobial (≥ 4 µg/mL). These isolates, originating from three Australian states, underwent whole genome sequencing/multilocus sequencing typing and were compared with the reference strain PG45 to investigate mutations that might be linked with the high macrolide/lincosamide MICs. All five belonged to ST52 and two macrolide associated mutations were identified within the 23 S rRNA gene (A2058G in two sequenced isolates and G748A in all sequenced isolates). Four additional 23 S rRNA gene mutations did not appear to be linked to macrolide resistance. Whilst the majority of Australian M. bovis isolates appear susceptible to the tested antimicrobials, emerging macrolide resistance was detected in three Australian states and requires continued monitoring.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Bovinos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Austrália/epidemiologia , Doenças dos Bovinos/epidemiologia , Farmacorresistência Bacteriana/genética , Macrolídeos , Testes de Sensibilidade Microbiana/veterinária , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária
15.
Antibiotics (Basel) ; 12(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37237797

RESUMO

The similarity of commensal Escherichia coli isolated from healthy cattle to antimicrobial-resistant bacteria causing extraintestinal infections in humans is not fully understood. In this study, we used a bioinformatics approach based on whole genome sequencing data to determine the genetic characteristics and phylogenetic relationships among faecal Escherichia coli isolates from beef cattle (n = 37) from a single feedlot in comparison to previously analysed pig faecal (n = 45), poultry extraintestinal (n = 19), and human extraintestinal E. coli isolates (n = 40) from three previous Australian studies. Most beef cattle and pig isolates belonged to E. coli phylogroups A and B1, whereas most avian and human isolates belonged to B2 and D, although a single human extraintestinal isolate belonged to phylogenetic group A and sequence type (ST) 10. The most common E. coli sequence types (STs) included ST10 for beef cattle, ST361 for pig, ST117 for poultry, and ST73 for human isolates. Extended-spectrum and AmpC ß-lactamase genes were identified in seven out of thirty-seven (18.9%) beef cattle isolates. The most common plasmid replicons identified were IncFIB (AP001918), followed by IncFII, Col156, and IncX1. The results confirm that feedlot cattle isolates examined in this study represent a reduced risk to human and environmental health with regard to being a source of antimicrobial-resistant E. coli of clinical importance.

16.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752777

RESUMO

ST372 are widely reported as the major Escherichia coli sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 E. coli whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, 'cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the pdu propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the pdu operon and acquisition of K antigen virulence genes characterize human-restricted lineages.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Cães , Animais , Infecções por Escherichia coli/veterinária , Filogenia , Virulência/genética , Fatores de Virulência/genética
17.
Microbiol Spectr ; 11(1): e0285722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625664

RESUMO

The present work describes the evolution of a resistance phenotype to a multitargeting antimicrobial agent, namely, silver nanoparticles (nanosilver; NAg), in the globally prevalent bacterial pathogen Acinetobacter baumannii. The Gram-negative bacterium has recently been listed as a critical priority pathogen requiring novel treatment options by the World Health Organization. Through prolonged exposure to the important antimicrobial nanoparticle, the bacterium developed mutations in genes that encode the protein subunits of organelle structures that are involved in cell-to-surface attachment as well as in a cell envelope capsular polysaccharide synthesis-related gene. These mutations are potentially correlated with stable physiological changes in the biofilm growth behavior and with an evident protective effect against oxidative stress, most likely as a feature of toxicity defense. We further report a different adaptation response of A. baumannii to the cationic form of silver (Ag+). The bacterium developed a tolerance phenotype to Ag+, which was correlated with an indicative surge in respiratory activity and changes in cell morphology, of which these are reported characteristics of tolerant bacterial populations. The findings regarding adaptation phenomena to NAg highlight the risks of the long-term use of the nanoparticle on a priority pathogen. The findings urge the implementation of strategies to overcome bacterial NAg adaptation, to better elucidate the toxicity mechanisms of the nanoparticle, and preserve the efficacy of the potent alternative antimicrobial agent in this era of antimicrobial resistance. IMPORTANCE Several recent studies have reported on the development of bacterial resistance to broad-spectrum antimicrobial silver nanoparticles (nanosilver; NAg). NAg is currently one of the most important alternative antimicrobial agents. However, no studies have yet established whether Acinetobacter baumannii, a globally prevalent nosocomial pathogen, can develop resistance to the nanoparticle. The study herein describes how a model strain of A. baumannii with no inherent silver resistance determinants developed resistance to NAg, following prolonged exposure. The stable physiological changes are correlated with mutations detected in the bacterium genome. These mutations render the bacterium capable of proliferating at a toxic NAg concentration. It was also found that A. baumannii developed a "slower-to-kill" tolerance trait to Ag+, which highlights the unique antimicrobial activities between the nanoparticulate and the ionic forms of silver. Despite the proven efficacy of NAg, the observation of NAg resistance in A. baumannii emphasises the potential risks of the repeated overuse of this agent on a priority pathogen.


Assuntos
Acinetobacter baumannii , Nanopartículas Metálicas , Antibacterianos/uso terapêutico , Acinetobacter baumannii/genética , Nanopartículas Metálicas/química , Prata/farmacologia , Mutação , Bactérias , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
18.
Microbiol Spectr ; 10(6): e0255422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409140

RESUMO

Lower urinary tract, renal, and bloodstream infections caused by phylogroup B2 extraintestinal pathogenic Escherichia coli (ExPEC) are a leading cause of morbidity and mortality. ST1193 is a phylogroup B2, multidrug-resistant sequence type that has risen to prominence globally, but a comprehensive analysis of the F virulence plasmids it carries is lacking. We performed a phylogenomic analysis of ST1193 (n = 707) whole-genome sequences from EnteroBase using entries with comprehensive isolation metadata. The data set comprised isolates from humans (n = 634 [90%]), including 339 (48%) from extraintestinal infection sites, and isolates from companion animals, wastewater, and wildlife. Phylogenetic analyses combined with gene detection and genotyping resolved an ST1193 clade structure segregated by serotype and F plasmid carriage. Most F plasmids fell into one of three related plasmid subtypes: F-:A1:B10 (n = 444 [65.97%]), F-:A1:B1 (n = 84 [12.48%]), and F-:A1:B20 (n = 80 [11.89%]), all of which carry the virulence genes cjrABC colocalized with senB (cjrABC-senB), a trademark signature of F29:A-:B10 subtype plasmids (pUTI89). To examine the phylogenetic relationship of these plasmids with pUTI89, complete sequences of F-:A1:B1 and F-:1:B20 plasmids were resolved. Unlike pUTI89, the most dominant and widely disseminated F plasmid that carries cjrABC-senB, F plasmids in ST1193 often carry a complex resistance region with an integron truncation (intI1Δ745) signature embedded within a structure assembled by IS26. Plasmid analysis shows that ST1193 has F plasmids that carry cjrABC-senB and ARG-encoding genes but lack tra regions and are likely derivatives of pUTI89. Further epidemiological investigation of ST1193 should seek to confirm its presence in human-associated environments and identify any potential agricultural links, which are currently lacking. IMPORTANCE We have generated an updated ST1193 phylogeny using publicly available sequences, reinforcing previous assertions that Escherichia coli ST1193 is a human-associated lineage, with many examples sourced from human extraintestinal infections. ST1193 from urban-adapted birds, wastewater, and companion animals are frequent, but isolates from animal agriculture are notably absent. Phylogenomic analysis identified several clades segregated by serogroup, all noted to carry highly similar F plasmids and antimicrobial resistance (AMR) signatures. Investigation of these plasmids revealed virulence regions with similarity to pUTI89, a key F virulence plasmid among dominant pandemic extraintestinal pathogenic E. coli lineages, and encoding a complex antibiotic resistance structure mobilized by IS26. This work has uncovered a series of F virulence plasmids in ST1193 and shows that the lineage mimics the host range and virulence attributes of other E. coli strains that carry pUTI89. These observations have significant ramifications for epidemiological source tracking of emerging and established pandemic ExPEC lineages.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli , Filogenia , Virulência/genética , Fator F , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Antibacterianos , Águas Residuárias , Pandemias , Plasmídeos/genética , Escherichia coli Extraintestinal Patogênica/genética , Fatores de Virulência/genética
19.
Microorganisms ; 10(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889108

RESUMO

Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a ß-lactamase gene that encodes the ability to hydrolyze oxyimino ß-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.

20.
mSphere ; 7(4): e0023822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862807

RESUMO

Escherichia coli sequence type 963 (ST963) is a neglected lineage closely related to ST38, a globally widespread extraintestinal pathogenic ST causing urinary tract infections (UTI) as well as sepsis in humans. Our current study aimed to improve the knowledge of this understudied ST by carrying out a comprehensive comparative analysis of whole-genome sequencing data consisting of 31 isolates from silver gulls in Australia along with another 80 genomes from public resources originating from geographically scattered regions. ST963 was notable for carriage of cephalosporinase gene blaCMY-2, which was identified in 99 isolates and was generally chromosomally encoded. ST963 isolates showed otherwise low carriage of antibiotic resistance genes, in contrast with the closely related E. coli ST38. We found considerable phylogenetic variability among international ST963 isolates (up to 11,273 single nucleotide polymorphisms [SNPs]), forming three separate clades. A major clade that often differed by 20 SNPs or less consisted of Australian isolates of both human and animal origin, providing evidence of zoonotic or zooanthropogenic transmission. There was a high prevalence of virulence F29:A-:B10 pUTI89-like plasmids within E. coli ST963 (n = 88), carried especially by less variable isolates exhibiting ≤1,154 SNPs. We characterized a novel 115,443-bp pUTI89-like plasmid, pCE2050_A, that carried a traS:IS5 insertion absent from pUTI89. Since IS5 was also present in a transposition unit bearing blaCMY-2 on chromosomes of ST963 strains, IS5 insertion into pUTI89 may enable mobilization of the blaCMY-2 gene from the chromosome/transposition unit to pUTI89 via homologous recombination. IMPORTANCE We have provided the first comprehensive genomic study of E. coli ST963 by analyzing various genomic and phenotypic data sets of isolates from Australian silver gulls and comparison with genomes from geographically dispersed regions of human and animal origin. Our study suggests the emergence of a specific blaCMY-2-carrying E. coli ST963 clone in Australia that is widely spread across the continent by humans and birds. Genomic analysis has revealed that ST963 is a globally dispersed lineage with a remarkable set of virulence genes and virulence plasmids described in uropathogenic E. coli. While ST963 separated into three clusters, a unique specific clade of Australian ST963 isolates harboring a chromosomal copy of AmpC ß-lactamase encoding the gene blaCMY-2 and originating from both humans and wild birds was identified. This phylogenetically close cluster comprised isolates of both animal and human origin, thus providing evidence of interspecies zoonotic transmission. The analysis of the genetic environment of the AmpC ß-lactamase-encoding gene highlighted ongoing evolutionary events that shape the carriage of this gene in ST963.


Assuntos
Charadriiformes , Infecções por Escherichia coli , Escherichia coli , Animais , Austrália , Charadriiformes/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/veterinária , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA